論文・講演




学術論文


2024年度
  1. Yusuke Miyajima, and Masahito Mochizuki (2024/09/30)
    Proposed modified computational model for the amoeba-inspired combinatorial optimization machine
    Nonlinear Theory and Its Applications (NOLTA), IEICE 153, 824-837 (2024).
    DOI: 10.1587/nolta.15.824 (arXiv:2404.06828)


  2. Tomonao Araki, Rina Takagi, Takashi Kurumaji, Yoshinori Tokura, Masahito Mochizuki, and Shinichiro Seki (2024/09/24)
    Exotic Spin Excitations in a Polar Magnet VOSe2O5
    Physical Review Letters 133, 136702/1-6 (2024).
    DOI: 10.1103/PhysRevLett.133.136702


  3. Yao Guang, Xichao Zhang, Yizhou Liu, Licong Peng, Fehmi Sami Yasin, Kosuke Karube, Daisuke Nakamura, Naoto Nagaosa, Yasujiro Taguchi, Masahito Mochizuki, Yoshinori Tokura, and Xiuzhen Yu (2024/09/04)
    Confined antiskyrmion motion driven by electric current excitations
    Nature Communications 15, 7701/1-8 (2024).
    DOI: 10.1038/s41467-024-52072-4


  4. Rintaro Eto, and Masahito Mochizuki (2024/08/08)
    Multiple Floquet Chern insulator phases in the spin-charge coupled triangular-lattice ferrimagnet: Crucial roles of higher-order terms in the high-frequency expansion
    Physical Review B 110, 085117/1-13 (2024).
    DOI: 10.1103/PhysRevB.110.085117 (arXiv:2404.05385)


  5. Mu-Kun Lee, Rubén M. Otxoa, and Masahito Mochizuki (2024/07/31)
    Predicted Multiple Walker Breakdowns for Current-Driven Domain-Wall Motion in Antiferromagnets
    Physical Review B 110, L020408/1-6 (2024).
    DOI: 10.1103/PhysRevB.110.L020408 (arXiv:2312.10337)


  6. Jing Xia, Xichao Zhang, Yan Zhou, Xiaoxi Liu, Guoping Zhao, and Masahito Mochizuki (2024/07/17)
    Transformation of a cellular skyrmion to polyomino-like structures
    Applied Physics Letters 125, 032404/1-7 (2024).
    DOI: 10.1063/5.0215267 (arXiv:2403.01765)


  7. Collins Ashu Akosa, Gen Tatara, Aurelien Manchon, and Masahito Mochizuki (2024/07/16)
    Decoupling the influences of chiral damping and Dzyaloshinskii-Moriya interaction in chiral magnetic domain walls
    Physical Review B 110, 024420/1-8 (2024).
    DOI: 10.1103/PhysRevB.110.024420


  8. Rintaro Eto, and Masahito Mochizuki (2024/05/31)
    Theory of Collective Excitations in the Quadruple-Q Magnetic Hedgehog Lattices
    Physical Review Letters 132, 226705/1-7 (2024).
    DOI: 10.1103/PhysRevLett.132.226705 (arXiv:2403.01765)


  9. Xichao Zhang, Yan Zhou, Xiuzhen Yu, and Masahito Mochizuki (2024/05/24)
    Bimerons create bimerons: Proliferation and aggregation induced by currents and magnetic fields
    Aggregate e590/1-11 (2024).
    DOI: 10.1002/agt2.590 (arXiv:2407.07303)


  10. Lan Bo, Xichao Zhang, Masahito Mochizuki, and Xuefeng Zhang (2024/05/22)
    Suppression of the Skyrmion Hall Effect in Synthetic Ferrimagnets with Gradient Magnetization
    Physical Review Research 6, 023199/1-9 (2024).
    DOI: 10.1103/PhysRevResearch.6.023199 (arXiv:2405.14641)


  11. Xue-Feng Pan, Peng-Bo Li, Xin-Lei Hei, Xichao Zhang, Masahito Mochizuki, and Franco Nori (2024/05/06)
    Magnon-Skyrmion Hybrid Quantum Systems: Tailoring Interactions via Magnons
    Physical Review Letters 132, 193601/1-10 (2024).
    DOI: 10.1103/PhysRevLett.132.193601 (arXiv:2404.09388)


2023年度
  1. Anjie Jiang, Yan Zhou, Xichao Zhang, and Masahito Mochizuki (2024/03/04)
    Micromagnetic theory of a type of thermal annihilation of magnetic skyrmionium
    Physical Review Research 6, 013229/1-16 (2024).
    DOI: 10.1103/PhysRevResearch.6.013229


  2. Lan Bo, Rongzhi Zhao, Xichao Zhang, Masahito Mochizuki, and Xuefeng Zhang (2024/02/13)
    Global Rotation of Skyrmion Bags under Vertical Microwave Fields
    Journal of Applied Physics 135, 063905/1-6 (2024).
    DOI: 10.1063/5.0187825 (arXiv:2402.15219)


  3. Xichao Zhang, Jing Xia, Oleg A. Tretiakov, Motohiko Ezawa, Guoping Zhao, Yan Zhou, Xiaoxi Liu, and Masahito Mochizuki (2023/12/06)
    Chiral Skyrmions Interacting with Chiral Flowers
    Nano Letters 23, 11793-11801 (2023).
    DOI: 10.1021/acs.nanolett.3c03792 (arXiv:2309.10338)


  4. Mu-Kun Lee, and Masahito Mochizuki (2023/11/08)
    Handwritten digit recognition by spin waves in a Skyrmion reservoir
    Scientific Reports 13, 19423/1-9 (2023).
    DOI: 10.1038/s41598-023-46677-w (arXiv:2309.06815)


  5. Xiuzhen Yu, Naoya Kanazawa, Xichao Zhang, Yoshio Takahashi, Konstantin V. Iakoubovskii, Kiyomi Nakajima, Toshiaki Tanigaki, Masahito Mochizuki, and Yoshinori Tokura (2023/09/15)
    Spontaneous Vortex-Antivortex Pairs and Their Topological Transitions in a Chiral-Lattice Magnet
    Advanced Materials 36, 2306441/1-9 (2023).
    DOI: 10.1002/adma.202306441


  6. Xichao Zhang, Jing Xia, Oleg A. Tretiakov, Motohiko Ezawa, Guoping Zhao, Yan Zhou, Xiaoxi Liu, and Masahito Mochizuki (2023/10/24)
    Laminar and transiently disordered dynamics of magnetic-skyrmion pipe flow
    Physical Review B 108, 144428/1-14 (2023).
    DOI: 10.1103/PhysRevB.108.144428 (arXiv:2305.13590)


  7. Xichao Zhang, Jing Xia, Oleg A. Tretiakov, Guoping Zhao, Yan Zhou, Masahito Mochizuki, Xiaoxi Liu, and Motohiko Ezawa (2023/08/09)
    Reversible magnetic domain reorientation induced by magnetic field pulses of fixed direction
    Physical Review B 108, 064410/1-11 (2023).
    DOI: 10.1103/PhysRevB.108.064410 (arXiv:2307.15263)


  8. Tatsuki Muto, and Masahito Mochizuki (2023/07/13)
    Theory of Magnetic Vortex Crystals Induced by Electric Dipole Interactions
    Journal of the Physical Society of Japan 92, 084704/1-7 (2023).
    DOI: 10.7566/JPSJ.92.084704 (arXiv:2305.00751)


  9. Lan Bo, Rongzhi Zhao, Chenglong Hu, Xichao Zhang, Xuefeng Zhang, and Masahito Mochizuki (2023/06/28)
    Controllable creation of skyrmion bags in a ferromagnetic nanodisk
    Physical Review B 107, 224431/1-7 (2023).
    DOI: 10.1103/PhysRevB.107.224431 (arXiv:2307.09528)


  10. Yusuke Miyajima, Masahito Mochizuki (2023/04/17)
    Machine-learning detection of the Berezinskii-Kosterlitz-Thouless transition and the second-order phase transition in XXZ models
    Physical Review B 107, 134420/1-16 (2023).
    DOI: 10.1103/PhysRevB.107.134420 (arXiv:2304.08871)


2022年度
  1. Junnosuke Matsuki, and Masahito Mochizuki (2023/03/13)
    Thermoelectric effect of a skyrmion crystal confined in a magnetic disk
    Physical Review B 107, L100408/1-5 (2023).
    DOI: 10.1103/PhysRevB.107.L100408 (arXiv:2304.09503)


  2. M. Verseils, P. Hemme, D. Bounoua, R. Cervasio, J-B. Brubach, S. Houver, Y. Gallais, A. Sacuto, D. Colson, T. Iijima, M. Mochizuki, P. Roy, and M. Cazayous (2023/02/24)
    Stabilizing electromagnons in CuO under pressure
    npj Quantum Materials volume 8, 11/1-7 (2023).
    DOI: 10.1038/s41535-023-00542-1


  3. Keisuke Kitayama, Masao Ogata, Masahito Mochizuki, and Yasuhiro Tanaka (2022/10/15)
    Predicted novel type of photoinduced topological phase transition accompanied by collision and collapse of Dirac-cone pair in organic salt α-(BEDT-TTF)2I3
    Journal of the Physical Society of Japan 91, 104704/1-8 (2022).
    DOI: 10.7566/JPSJ.91.104704 (arXiv:2203.04539)


  4. Mu-Kun Lee, and Masahito Mochizuki (2022/07/29)
    Reservoir Computing with Spin Waves in a Skyrmion Crystal
    Physical Review Applied 18, 014074/1-18 (2022).
    DOI: 10.1103/PhysRevApplied.18.014074 (arXiv:2203.02160) Editors' Suggestion


  5. Yasuhiro Tanaka, and Masahito Mochizuki (2022/07/18)
    Dynamical phase transitions in the photodriven charge-ordered Dirac-electron system
    Physical Review Letters 129, 047402/1-6 (2022).
    DOI: 10.1103/PhysRevLett.129.047402 (arXiv:2203.04542)


  6. Rintaro Eto, Rico Pohle, and Masahito Mochizuki (2022/06/28)
    Low-Energy Excitations of Skyrmion Crystals in a Centrosymmetric Kondo-Lattice Magnet: Decoupled Spin-Charge Excitations and Nonreciprocity
    Physical Review Letters 129, 017201/1-7 (2022).
    DOI: 10.1103/PhysRevLett.129.017201 (arXiv:2203.01496)


  7. Takashi Inoue, and Masahito Mochizuki (2022/04/19)
    Photoinduced 120-degree spin order in the Kondo-lattice model on a triangular lattice
    Physical Review B 105, 144422/1-15 (2022).
    DOI: 10.1103/PhysRevB.105.144422 (arXiv:2202.06528)


2021年度
  1. Rintaro Eto, and Masahito Mochizuki (2021/09/27)
    Dynamical switching of magnetic topology in microwave-driven itinerant magnet
    Physical Review B 104, 104425/1-13 (2021).
    DOI: 10.1103/PhysRevB.104.104425 (arXiv:2109.13511)


  2. Yuto Uwabo, and Masahito Mochizuki (2021/09/24)
    Proposed Negative Thermal Expansion in Honeycomb-Lattice Antiferromagnets
    Journal of the Physical Society of Japan 90, 104712/1-6 (2021).
    DOI: 10.7566/JPSJ.90.104712 (arXiv:2108.13065)


  3. Keisuke Kitayama, Yasuhiro Tanaka, Masao Ogata, and Masahito Mochizuki (2021/09/15)
    Floquet theory of photoinduced topological phase transitions in the organic salt α-(BEDT-TTF)2I3 irradiated with elliptically polarized light
    Journal of the Physical Society of Japan 90, 104705/1-12 (2021).
    DOI: 10.7566/JPSJ.90.104705 (arXiv:2108.05843) Editors' Choice


  4. Keisuke Kitayama, Masahito Mochizuki, Yasuhiro Tanaka, and Masao Ogata (2021/08/16)
    Predicted photoinduced pair annihilation of emergent magnetic charges in the organic salt α-(BEDT-TTF)2I3 irradiated by linearly polarized light
    Physical Review B 104, 075127/1-9 (2021).
    DOI: 10.1103/PhysRevB.104.075127 (arXiv:2108.08069)


  5. Y. Tanaka, and Masahito Mochizuki (2021/08/13)
    Real-time dynamics of the photoinduced topological state in organic conductor α-(BEDT-TTF)2I3 under continuous-wave and pulse excitations
    Physical Review B 104, 085123/1-7 (2021).
    DOI: 10.1103/PhysRevB.104.085123 (arXiv:2108.04758)


  6. Yusuke Miyajima, Yusuke Murata, Yasuhiro Tanaka, and Masahito Mochizuki (2021/08/11)
    Machine learning detection of Berezinskii-Kosterlitz-Thoulesstransitions in q-state clock models
    Physical Review B 104, 075114/1-10 (2021).
    DOI: 10.1103/PhysRevB.104.075114 (arXiv:2108.05823)


2020年度
  1. T. Katsufuji, M. Miyake, M. Naka, Masahito Mochizuki, S. Kogo, T. Kajita, Y. Shimizu, M. Itoh, T. Hasegawa, S. Shimose, S. Noguchi, T. Saiki, T. Sato, and F. Kagawa (2021/02/02)
    Orbital and magnetic ordering and domain-wall conduction in ferrimagnet La5Mo4O16
    Physical Review Research 3, 013105/1-17 (2021).
    DOI: 10.1103/PhysRevResearch.3.013105


  2. Yasuhiro Tanaka, Takashi Inoue, and Masahito Mochizuki (2020/08/19)
    Theory of the Inverse Faraday Effect due to the Rashba Spin-Oribt Interactions: Roles of Band Dispersions and Fermi Surfaces
    New Journal of Physics 22, 083054/1-11 (2020).
    DOI: 10.1088/1367-2630/aba5be (arXiv:2007.08072)


  3. Keisuke Kitayama, and Masahito Mochizuki (2020/05/26)
    Predicted photoinduced topological phases in organic salt α-(BEDT-TTF)2I3
    Physical Review Research 2, 023229/1-7 (2020).
    DOI: 10.1103/PhysRevResearch.2.023229 (arXiv:2005.14364)


2019年度
  1. Masayuki Miyake, and Masahito Mochizuki (2020/03/17)
    Creation of nanometric magnetic skyrmions by global application of circularly polarized microwave magnetic field
    Physical Review B 101, 094419/1-9 (2020).
    DOI: 10.1103/PhysRevB.101.094419 (arXiv:2003.07022)


  2. Kohei Tanaka, Ryosuke Sugawara, and Masahito Mochizuki (2020/03/11)
    Theoretical study on stabilization and destabilization of magnetic skyrmions by uniaxial-strain-induced anisotropic Dzyaloshinskii--Moriya interactions
    Physical Review Materials 4, 034404/1-8 (2020).
    DOI: 10.1103/PhysRevMaterials.4.034404 (arXiv:2003.07034)


  3. Kotaro Shimizu, and Masahito Mochizuki (2020/01/13)
    Theoretical study on slit experiments in Rashba electron systems
    Physical Review B 101, 045301/1-6 (2020).
    DOI: 10.1103/PhysRevB.101.045301 (arXiv:1909.10725)


  4. Tatsuya Koide, Akihito Takeuchi, and Masahito Mochizuki (2019/07/03)
    DC spinmotive force from microwave-active resonant dynamics of skyrmion crystal under a tilted magnetic field
    Physical Review B 100, 014408/1-9 (2019).
    DOI: 10.1103/PhysRevB.100.014408 (arXiv:1907.00621)


  5. Akihito Takeuchi, Shigeyasu Mizushima, and Masahito Mochizuki (2019/07/02)
    Electrically driven spin torque and dynamical Dzyaloshinskii-Moriya interaction in magnetic bilayer systems
    Scientific Reports 9, 9528/1-8 (2019).
    DOI: 10.1038/s41598-019-46009-x (arXiv:1907.00601)


  6. Kab-Jin Kim, Masahito Mochizuki, and Teruo Ono (2019/05/01)
    Prediction of topological Hall effect in a driven magnetic domain wall
    Applied Physics Express 12, 053006/1-3 (2019).
    DOI: 10.7567/1882-0786/ab1801 (arXiv:1907.01648)


  7. L. V. Abdurakhimov, S. Khan, N. A. Panjwani, J. D. Breeze, Masahito Mochizuki, S. Seki, Y. Tokura, J. J. L. Morton, and H. Kurebayashi (2019/04/03)
    Magnon-photon coupling in the noncollinear magnetic insulator Cu2OSeO3
    Physical Review B 99, 140401(R)/1-6 (2019).
    DOI: 10.1103/PhysRevB.99.140401 (arXiv:1802.07113) Editors' Suggestion


2018年度
  1. Masaya Kobayashi, and Masahito Mochizuki (2019/02/21)
    Theory of magnetism-driven negative thermal expansion in inverse perovskite antiferromagnets
    Physical Review Materials 3, 024407/1-6 (2019).
    DOI: 10.1103/PhysRevMaterials.3.024407 (arXiv:1902.08904)


  2. Kosuke Kurushima, Kohei Tanaka, Hiroshi Nakajima, Masahito Mochizuki, and Shigeo Mori (2019/02/01)
    Microscopic magnetization distribution of Bloch lines in a uniaxial magnet
    Journal of Applied Physics 125, 053902/1-4 (2019).
    DOI: 10.1063/1.5042678 (arXiv:1907.00819)


  3. Masahito Ikka, Akihito Takeuchi, and Masahito Mochizuki (2018/11/27)
    Resonance modes and microwave-driven translational motion of a skyrmion crystal under an inclined magnetic field
    Physical Review B 98, 184428/1-9 (2018).
    DOI: 10.1103/PhysRevB.98.184428 (arXiv:1811.06501)


  4. Ian Aupiais, Masahito Mochizuki, Hideaki Sakata, Romain Grasset, Yann Gallais, Alain Sacuto, and Maximilien Cazayous (2018/11/20)
    Colossal electromagnon excitation in the non-cycloidal phase of TbMnO3 under pressure
    npj Quantum Materials 3, 60/1-5 (2018).
    DOI: 10.1038/s41535-018-0130-3 (arXiv:1901.00919)


  5. Akihito Takeuchi, and Masahito Mochizuki (2018/08/15)
    Selective activation of an isolated magnetic skyrmion in a ferromagnet with microwave electric fields
    Applied Physics Letters 113, 072404/1-5 (2018).
    DOI: 10.1063/1.5045629 (arXiv:1810.01606)


2017年度
  1. Masahito Mochizuki, Keisuke Ihara, Jun-ichiro Ohe, and Akihito Takeuchi (2018/03/19)
    Highly efficient induction of spin polarization by circularly polarized electromagnetic waves in the Rashba spin-orbit systems
    Applied Physics Letters 112, 122401/1-5 (2018).
    DOI: 10.1063/1.5022262 (arXiv:1809.07513)


  2. Masahito Mochizuki, Masaya Kobayashi, Reoya Okabe, and Daisuke Yamamoto (2018/02/05)
    Spin model for nontrivial types of magnetic order in inverse-perovskite antiferromagnets
    Physical Review B 97, 060401(R)/1-5 (2018).
    DOI: 10.1103/PhysRevB.97.060401 (arXiv:1809.04740)


  3. H. Nakajima, A. Kotani, Masahito Mochizuki, K. Harada, and S. Mori (2017/11/06)
    Formation process of skyrmion lattice domain boundaries: The role of grain boundaries
    Applied Physics Letters 111, 192401/1-5 (2017).
    DOI: 10.1063/1.4991791 (arXiv:1907.00774)


  4. Masahito Mochizuki (2017/08/30)
    Controlled creation of nanometric skyrmions using external magnetic fields
    Applied Physics Letters 111, 092403/1-5 (2017).
    DOI: 10.1063/1.4993855 (arXiv:1809.04331)


2016年度
2015年度
  1. Masahito Mochizuki (2015/10/26)
    Creation of Skyrmions by Electric Field on Chiral-Lattice Magnetic Insulators
    Advanced Electronic Materials 2, 1500180/1-6 (2016).
    DOI: 10.1002/aelm.201500180 (arXiv:1511.07123)


  2. Masahito Mochizuki (2015/12/08)
    Theory of Magnetic-Field-Induced Polarization Flop in Spin-Spiral Multiferroics
    Physical Review B 92, 224412/1-6 (2015).
    DOI: 10.1103/PhysRevB.92.224412 (arXiv:1511.07960)


  3. I. Kezsmarki, S. Bordács, P. Milde, E. Neuber, L. M. Eng, J. S. White, H. M. Ronnow, C. D. Dewhurst, Masahito Mochizuki, K. Yanai, H. Nakamura, D. Ehlers, V. Tsurkan, and A. Loidl (2015/09/07)
    Neel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8
    Nature Materials 14, 1116-1122 (2015).
    DOI:10.1038/nmat4402 (arXiv:1502.08049)


  4. Masahito Mochizuki and Yoshio Watanabe (2015/08/27)
    Writing a skyrmion on multiferroic materials
    Applied Physics Letters 107, 082409/1-5 (2015).
    DOI: 10.1063/1.4929727 (arXiv:1511.08433)


  5. Masakazu Matsubara, Sebastian Manz, Masahito Mochizuki, Teresa Kubacka, Ayato Iyama, Nadir Aliouane, Tuyoshi Kimura, Steven Johnson, Dennis Meier, and Manfred Fiebig (2015/06/05)
    Magnetoelectric domain control in multiferroic TbMnO3
    Science 348, 1112-1115 (2015).
    DOI: 10.1126/science.1260561


  6. Masahito Mochizuki (2015/05/12)
    Microwave Magnetochiral Effect in Cu2OSeO3
    Physical Review Letters 114, 197203/1-5 (2015).
    DOI: 10.1103/PhysRevLett.114.197203 (arXiv:1504.05864)


2013年度
  1. M. Mochizuki, X. Z. Yu, S. Seki, N. Kanazawa, W. Koshibae, J. Zang, M. Mostovoy, Y. Tokura, and N. Nagaosa (2014/01/26)
    Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect
    Nature Materials 13, 241-246 (2014).
    DOI: 10.1038/nmat3862


  2. Junichi Iwasaki, Masahito Mochizuki, and Naoto Nagaosa (2014/02/05)
    Current-induced skyrmion dynamics in constricted geometries
    Nature Nanotechnology 8, 742-747 (2013).
    DOI: 10.1038/nnano.2013.176


  3. Y. Okamura, F. Kagawa, M. Mochizuki, M. Kubota, S. Seki, S. Ishiwata, M. Kawasaki, Y. Onose, and Y. Tokura (2013/08/30)
    Microwave magnetoelectric effect via skyrmion resonance modes in a helimagnetic multiferroic
    Nature Communications 4, 3391/1-6 (2013).
    DOI: 10.1038/ncomms3391


  4. Masahito Mochizuki, and Shinichiro Seki (2013/04/03)
    Magnetoelectric resonances and predicted microwave diode effect of the skyrmion crystal in a multiferroic chiral-lattice magnet
    Physical Review B 87, 134403/1-5 (2013).
    DOI: 10.1103/PhysRevB.87.134403


2012年度
  1. Junichi Iwasaki, Masahito Mochizuki, and Naoto Nagaosa (2013/02/12)
    Universal current-velocity relation of skyrmion motion in chiral magnets
    Nature Communications 4, 1463/1-8 (2013).
    DOI: 10.1038/ncomms2442


2011年度
  1. Y. Shiomi, M. Mochizuki, Y. Kaneko, and Y. Tokura (2012/01/30)
    Hall Effect of Spin-Chirality Origin in a Triangular-Lattice Helimagnet Fe1.3Sb
    Physical Review Letters 108, 056601/1-5 (2012).
    DOI: 10.1103/PhysRevLett.108.056601


  2. H. Wadati, J. Okamoto, M. Garganourakis, V. Scagnoli, U. Staub, Y. Yamasaki, H. Nakao, Y. Murakami, M. Mochizuki, M. Nakamura, M. Kawasaki, and Y. Tokura (2012/01/24)
    Origin of the Large Polarization in Multiferroic YMnO3 Thin Films Revealed by Soft- and Hard-X-Ray Diffraction
    Physical Review Letters 108, 047203/1-5 (2012).
    DOI: 10.1103/PhysRevLett.108.047203


  3. Masahito Mochizuki (2012/01/05)
    Spin-Wave Modes and Their Intense Excitation Effects in Skyrmion Crystals
    Physical Review Letters 108, 017601/1-5 (2012).
    DOI: 10.1103/PhysRevLett.108.017601


  4. Masahito Mochizuki, Nobuo Furukawa, and Naoto Nagaosa (2011/10/05)
    Theory of spin-phonon coupling in multiferroic manganese perovskites RMnO3
    Physical Review B 84, 144409/1-14 (2011). Editors' Suggestion
    DOI: 10.1103/PhysRevB.84.144409


  5. P. Rovillain, M. Cazayous, Y. Gallais, M-A. Measson, A. Sacuto, H. Sakata, and Masahito Mochizuki (2011/01/05)
    Magnetic Field Induced Dehybridization of the Electromagnons in Multiferroic TbMnO3
    Physical Review Letters 107, 027202/1-4 (2011).
    DOI: 10.1103/PhysRevLett.107.027202


2010年度
  1. Masahito Mochizuki, and Nobuo Furukawa (2010/10/25)
    Theory of Magnetic Switching of Ferroelectricity in Spiral Magnets
    Physical Review Letters 105, 187601/1-4 (2010).
    DOI: 10.1103/PhysRevLett.105.187601


  2. Masahito Mochizuki, and Naoto Nagaosa (2010/09/28)
    Theoretically Predicted Picosecond Optical Switching of Spin Chirality in Multiferroics
    Physical Review Letters 105, 147202/1-4 (2010).
    DOI: 10.1103/PhysRevLett.105.147202


  3. Masahito Mochizuki, Nobuo Furukawa, and Naoto Nagaosa (2010/07/16)
    Spin Model of Magnetostrictions in Multiferroic Mn Perovskites
    Physical Review Letters 105, 037205/1-4 (2010).
    DOI: 10.1103/PhysRevLett.105.037205


  4. Masahito Mochizuki, Nobuo Furukawa, and Naoto Nagaosa (2010/04/30)
    Theory of Electromagnons in the Multiferroic Mn Perovskites: The Vital Role of Higher Harmonic Components of the Spiral Spin Order
    Physical Review Letters 104, 177206/1-4 (2010).
    DOI: 10.1103/PhysRevLett.104.177206


2009年度
  1. Nobuo Furukawa, and Masahito Mochizuki (2010/02/01)
    Roles of Bond Alternation in Magnetic Phase Diagram of RMnO3
    Journal of the Physical Society of Japan 79, 033708/1-4 (2010).
    DOI: 10.1143/JPSJ.79.033708


  2. M. Tokunaga, Y. Yamasaki, Y. Onose, M. Mochizuki, Nobuo Furukawa, and Y. Tokura (2009/10/28)
    Novel Multiferroic State of Eu1-xYxMnO3 in High Magnetic Fields
    Physical Review Letters 103, 187202/1-4 (2009).
    DOI: 10.1103/PhysRevLett.103.187202


  3. Masahito Mochizuki, and Nobuo Furukawa (2009/10/19)
    Microscopic Model and Phase Diagrams of the Multiferroic Perovskite Manganites
    Physical Review B 80, 134416 (2009).
    DOI: 10.1103/PhysRevB.80.134416


  4. Masahito Mochizuki, and Nobuo Furukawa (2009/04/01)
    Mechanism of Lattice-Distortion-Induced Electric-Polarization Flop in the Multiferroic Perovskite Manganites
    Journal of the Physical Society of Japan 78, 053704/1-4 (2009).
    DOI: 10.1143/JPSJ.78.053704


2008年度
  1. F. Kagawa, M. Mochizuki, Y. Onose, H. Murakawa, Y. Kaneko, N. Furukawa, and Y. Tokura (2009/02/06)
    Dynamics of Multiferroic Domain Wall in Spin-Cycloidal Ferroelectric DyMnO3
    Physical Review Letters 102, 057604/1-4 (2009).
    DOI: 10.1103/PhysRevLett.102.057604


  2. Y. Takahashi, N. Kida, Y. Yamasaki, J. Fujioka, T. Arima, R. Shimano, S. Miyahara, M. Mochizuki, N. Furukawa, and Y. Tokura (2008/10/27)
    Evidence for an Electric-Dipole Active Continuum Band of Spin Excitations in Multiferroic TbMnO3
    Physical Review Letters 101, 187201/1-4 (2008).
    DOI: 10.1103/PhysRevLett.101.187201


2007年度
  1. Daisuke Yoshizumi, Yuji Muraoka, Yoshihiko Okamoto, Yoko Kiuchi, Jun-Ichi Yamaura, Masahito Mochizuki, Masao Ogata, and Zenji Hiroi (2007/06/11)
    Precise Control of Band Filling in NaxCoO2
    Journal of the Physical Society of Japan 76, 063705/1-4 (2007).
    DOI: 10.1143/JPSJ.76.063705


2006年度
  1. Masahito Mochizuki, H. Q. Yuan, and Masao Ogata (2007/01/25)
    Specific Heat and Superfluid Density for Possible Two Different Superconducting States in NaxCoO2・yH2O
    Journal of the Physical Society of Japan 76, 023702/1-5 (2007).


  2. Masahito Mochizuki, and Masao Ogata (2007/01/10)
    CoO2-Layer-Thickness Dependence of Magnetic Properties and Possible Two Different Superconducting States in NaxCoO2・yH2O
    Journal of the Physical Society of Japan 76, 013704/1-5 (2007).


  3. Masahito Mochizuki, and Masao Ogata (2006/11/10)
    Deformation of Electronic Structures Due to CoO6 Distortion and Phase Diagrams of NaxCoO2・yH2O
    Journal of the Physical Society of Japan 75, 113703/1-5 (2006).


2005年度
  1. Youichi Yanase, Masahito Mochizuki, and Masao Ogata (2005/12/15)
    Role of Spin-Orbit Coupling on the Spin Triplet Pairing in NaxCoO2・yH2O II: Multiple Phase Diagram under the Magnetic Field
    Journal of the Physical Society of Japan 74, 3351-3364 (2005).


  2. Youichi Yanase, Masahito Mochizuki, and Masao Ogata (2005/09/15)
    Role of Spin-Orbit Coupling on the Spin Triplet Pairing in NaxCoO2・yH2O I: d-Vector under Zero Magnetic Field
    Journal of the Physical Society of Japan 74, 2568-2578 (2005).


  3. Masahito Mochizuki, Youichi Yanase, and Masao Ogata (2005/06/15)
    Ferromagnetic and Triplet-Pairing Instabilities Controlled by Trigonal Distortion of CoO6 Octahedra in NaxCoO2・yH2O
    Journal of the Physical Society of Japan 74, 1670-1673 (2005).


  4. Masahito Mochizuki, Youichi Yanase, and Masao Ogata (2005/04/15)
    Ferromagnetic Fluctuation and Possible Triplet Superconductivity in NaxCoO2・yH2O: Fluctuation-Exchange Study of the Multiorbital Hubbard Model
    Physical Review Letters 94, 147005/1-4 (2005).


  5. Youichi Yanase, Masahito Mochizuki, and Masao Ogata (2005/01/15)
    Multi-Orbital Analysis on the Superconductivity in NaxCoO2・yH2O
    Journal of the Physical Society of Japan 74, 430-444 (2005).


2004年度以前
  1. Masahito Mochizuki, and Masatoshi Imada (2004/07/15)
    G-Type Antiferromagnetism and Orbital Ordering Due to the Crystal Field from the Rare-Earth Ions Induced by the GdFeO3-Type Distortion in RTiO3 with R=La, Pr, Nd and Sm
    Journal of the Physical Society of Japan 73, 1833-1850 (2004).


  2. Masahito Mochizuki, and Masatoshi Imada (2003/10/16)
    Orbital-Spin Structure and Lattice Coupling in RTiO3 Where R=La, Pr, Nd and Sm
    Physical Review Letters 91, 167203/1-4 (2003).


  3. Masahito Mochizuki (2002/08/15)
    Spin and Orbital States and Their Phase Transitions of the Perovskite-Type Ti Oxides: Weak Coupling Approach
    Journal of the Physical Society of Japan 71, 2039-2047 (2002).


  4. Masahito Mochizuki, and Masatoshi Imada (2001/10/15)
    Origin of G-Type Antiferromagnetism and Orbital-Spin Structures in LaTiO3
    Journal of the Physical Society of Japan 70, 2872-2875 (2001).


  5. Masahito Mochizuki, and Masatoshi Imada (2001/06/15)
    Magnetic and Orbital States and Their Phase Transition of the Perovskite-Type Ti Oxides: Strong Coupling Approach
    Journal of the Physical Society of Japan 70, 1777-1789 (2001).


  6. Masahito Mochizuki, and Masatoshi Imada (2000/07/15)
    Magnetic Phase Transition of the Perovskite-Type Ti Oxides
    Journal of the Physical Society of Japan 69, 1982-1985 (2000).